Обеспечение эффективного теплового контакта путем применения соответствующих теплопроводящих электроизоляционных материалов имеет важное значение в различных отраслях промышленности.
С 1993 года ГК Номакон-Евролиния производит современные инновационные продукты НОМАКОН™ КПТД (Керамико-Полимерные Теплопроводящие Диэлектрические материалы), позволяющие решать самые сложные задачи в области отвода тепла и «теплового управления».
Наша продукция отражает основные достижения многолетней работы на рынке теплопроводящих электроизоляционных материалов, результаты непрерывного совершенствования рецептур и технологии производства с целью получения требуемых механических и диэлектрических характеристик КПТД-материалов в сочетании с высокими теплопроводящими свойствами и конкурентной ценой.
Материалы КПТД представлены под следующими торговыми марками:
НОМАКОН™ КПТД-1 | НОМАКОН™ КПТД-2 | НОМАКОН™ КПТД-2М | НОМАКОН™ КПТД-3 |
![]() |
![]() |
![]() |
![]() |
КПТД-материалы включают керамические теплопроводящие диэлектрические наполнители в виде микропорошков различной природы и различного дисперсного состава, которые определенным образом распределены в эластичной матрице – в термостойком силиконовом каучуке (компаунды и листовые материалы), или в термостойкой полидиметилсилоксановой жидкости (пасты и смазки).
Разработанные новые виды керамических наполнителей, такие, как α-Кристален™ и β-Кристален™, подобранные дисперсные составы и найденные оптимальные соотношения компонентов позволили предложить широкий выбор материалов с заданными нормируемыми физическими, механическими, теплопроводящими и электроизоляционными свойствами.
КПТД-материалы выпускаются по ТУ РБ 100009933.004-2001. Впервые в СНГ нами освоены, зарегистрированы и применяются для контроля теплопроводящих характеристик общепризнанные международные стандарты определения теплопроводности и удельного термического сопротивления электроизоляционных материалов ASTM D 5470-06 и ASTM E 1530-06.
Стандартизованные материалы, а также листовые материалы и прокладки различной толщины и размеров могут изготавливаться по чертежам заказчика. Мы постоянно сотрудничаем с нашими клиентами в области инноваций – разрабатываем новые продукты под заказ, изготавливаем и поставляем опытные образцы для испытаний, предлагаем методы расчета тепловых процессов с применением наших материалов.
В настоящее время материалы НОМАКОН™ КПТД применяет в своих изделиях и разработках большинство производственных предприятий, НИИ и КБ из стран СНГ и Балтии.
Гарантия качества и надежности нашей продукции - это многолетние контракты на поставку КПТД-материалов ведущим производителям:
Обеспечение отвода тепловой энергии от греющегося электронного прибора является одной из важнейших задач разработчиков и производителей электронной техники. Повышение функциональности устройств, увеличение их мощности при миниатюризации компонентов, как правило, приводит к необходимости рассеивать все большие тепловые потоки. В данном случае, создание эффективного теплового контакта путем применения соответствующих теплопроводящих электроизоляционных материалов имеет важное значение для эксплуатационных характеристик изделия, стабильности и долговечности его работы.
Процесс теплопереноса от горячего корпуса к радиатору с последующим рассеиванием тепла конвекцией в окружающую среду мы называем «естественной тепловой разгрузкой» прибора. Эффективность тепловой разгрузки определяется следующими основными параметрами:
На практике конструкции корпуса и радиатора в электронных изделиях достаточно оптимизированы по теплоотводу. Таким образом, единственным конструктивным элементом электронной сборки, ограничивающим теплопередачу и теплопередающие свойства которого поддаются коррекции, является изолирующая прокладка. Именно она, а точнее, термическое сопротивление, возникающее между прибором и радиатором, которые разделены прокладкой, и определяет конструктивные размеры, мощность и производительность всего прибора в целом. Чем выше термическое сопротивление изолирующей прокладки, тем больший перепад температур ΔT создается между корпусом и радиатором, что, соответственно, повышает опасность перегрева прибора и снижает время его наработки на отказ. Очевидно, что на современном уровне развития электроники изолирующая прокладка выполняет отнюдь не второстепенную роль. Максимальное снижение термического сопротивления между корпусом и радиатором позволяет минимизировать теплопередающие поверхности и размеры прибора при заданных мощностях отводимых тепловых потоков ΔQ .
Важное значение при выборе теплопроводящей прокладки имеет также обеспечение надежной электрической изоляции между прибором и радиатором, технологичность и минимальная трудоемкость сборки, возможность применения изделия в автоматизированных технологиях массового производства, оптимальное соотношение цена-качество.
При разработке КПТД-материалов специалистами ОДО «НОМАКОН» найдены решения, позволяющие поддерживать высокий уровень теплопроводящих и электроизоляционных характеристик материалов, т.е. обеспечивать сочетание максимально возможной теплопроводности, электрической прочности и комформности материала к контактной поверхности. Под конформностью материала к контактной поверхности в данном случае подразумевается возможность его плотного прилегания к прижимающим поверхностям с вытеснением остаточного воздуха и повторением формы микрорельефа поверхностной шероховатости с целью минимизации контактного термического сопротивления.
Вышеперечисленные свойства достигнуты путем максимального наполнения эластомеров теплопроводящими диэлектрическими микропорошками оптимального дисперсного состава в сочетании с высокой степенью остаточной эластичности полученного после полимеризации материала, его выраженной термической релаксацией, а также формированием гладкой и ровной (глянцевой) поверхности для листовых материалов КПТД-2 и КПТД-2М.
Таким образом, уже при незначительных напряжениях сжатия P1 < P2 < P3 КПТД-материалы способны существенно снизить термическое сопротивление ΔT1 > ΔT2 > ΔT3 и обеспечить эффективный эластичный термоинтерфейс.
Согласно уравнению теплопередачи теплопроводностью через плоскую стенку (прокладку) количество тепла, переданного в единицу времени (тепловой поток) ΔQ, Вт, прямо пропорционально разности температур теплоотдающей T1S, °С, и теплопринимающей T2S, °С, поверхностей, прямопропорционально площади поверхности теплопередачи (прокладки) F, м2, и обратно пропорционально суммарному удельному термическому сопротивлению теплопередаче R, (К•м2)/Вт:
Суммарное удельное термическое сопротивление теплопередаче R в данном случае согласно правилу аддитивности термических сопротивлений состоит из трех составляющих: термического сопротивления на границе «теплоотдающая контактная поверхность - прокладка» R1S, термического сопротивления, зависящего от толщины δ и теплопроводности λ материала прокладки δ/λ, а также термического сопротивления на границе «прокладка - теплопринимающая контактная поверхность» R2S:
Построив по результатам испытаний (ASTM D 5470, ASTM E 1350) линейную зависимость R = ƒ(δ) для данной марки КПТД- материала возможно определить суммарное удельное контактное термическое сопротивление на границе «контактная поверхность-материал» RS= R1S + R2S по графику в точке δ = 0 , а также определить истинную теплопроводность материала прокладки λ, Вт/(м•К):
Определив экспериментальным путем для различных материалов значения RS и λ возможно достаточно точно рассчитать суммарное удельное термическое сопротивление теплопередаче R, и, зная площадь поверхности прокладки F, вычислить ее термическое сопротивление RF, К/Вт, при различных толщинах материала:
Ниже на диаграмме приведены значения суммарного удельного термического сопротивления R КПТД-материалов, определенные в сопоставимых условиях эксплуатации данных видов материалов.
Для компаундов КПТД-1 номинальная толщина слоя при вклеивании радиатора на теплоотдающую поверхность прибора составляла δ = 0,1 ± 0,05mm , листовые материалы КПТД-2 испытывались при номинальной толщине листа δ = 0,2 ± 0,015mm , толщина остаточного слоя термопаст КПТД-3 при испытаниях составляла 20-35 мкм. Результаты получены при напряжении сжатия прижимных поверхностей P = 0,69 MПa (100 psi), температуре материала 80-110°С и плотности теплового потока 4,5-9 Вт/см2. Прижимные поверхности были выполнены согласно ASTM D 5470, ASTM E 1350 в виде дисков диаметром 32 мм (поверхность теплопередачи F = 8,04 cm², формат прокладки Т0-3), а также в виде дисков диаметром 50 мм.
Результаты измерений показали, что термопасты КПТД-3 при сжатии формируют минимальную толщину слоя теплопроводящего материала за счет вязко-пластичных свойств и при этом за счет высокой адгезии и комформности к поверхности обеспечивают минимальное суммарное контактное термическое сопротивление на уровне RS = 0,045 - 0,055(К•см²)/Вт. При заливке компаундами КПТД-1 с последующим сжатием после полимеризации комформность материала к поверхности несколько снижается в сравнении с термопастами, а контактное термическое сопротивление увеличивается: RS = 0,17 - 0,22 (К•см²)/Вт
Далее по степени конформности к контактной поверхности следуют листовые материалы с повышенной эластичностью КПТД-2М: RS = 0,19 - 0,23 (К•см²)/Вт . Нанесение на поверхность стандартного листового материала КПТД-2 липкого клеящего слоя (ЛК) или липкой позиционирующей смазки (ЛП) также увеличивает комформность в сравнении с материалом без липкого слоя, и при этом RS = 0,55 - 0,80(К•см2)/Вт . Для стандартного эластичного листового материала КПТД-2 без липкого слоя RS = 0,90 - 1,05 (К•см²)/Вт .
Таким образом, на основании полученных результатов, величину суммарного удельного контактного сопротивления RS следует считать достаточно объективным сравнительным показателем комформности КПТД-материалов к контактной поверхности. В представленных ниже материалах данный показатель используется для оценочного расчета термического сопротивления теплопроводящих материалов НОМАКОН™ КПТД.
Комформность листовых материалов КПТД-2 и КПТД-2М к контактной поверхности и, соответственно, контактное термическое сопротивление, в существенной мере определяются их эластичностью. Эластичность (сжимаемость) КПТД-материалов характеризуется величиной модуля упругости E, МПа/мм, рассчитываемого по величине абсолютной деформации материала при сжатии, а также степенью сжатия материала Δδ , %, рассчитываемой, как отношение величины абсолютной деформации листа при сжатии к исходной толщине листового материала. В зависимости от приложенного напряжения сжатия в пределах σ = 0,07 - 40 МПа максимальная степень сжатия, при которой не происходит разрушение материала, может достигать величины Δδ= 65-80% .
Номинальное рабочее напряжение сжатия σ10 , МПа определяет допустимую относительную деформацию листа материала (степень сжатия) в пределах до 10% от его исходной толщины, при которой изготовителем гарантируются его прочностные, электроизоляционные и теплопроводящие свойства, представленные в нормативных документах на КПТД-материалы. Предельное напряжение сжатия σ50 , Мпа, определяет степень сжатия листа материала в пределах до 50% от его исходной толщины при которой не происходит потеря эластичности, и в последующем, при снятии напряжения сжатия материал восстанавливается до исходной толщины и сохраняет свои свойства. Не допускается эксплуатация изделий из материалов КПТД-2 и КПТД-2М при превышении предельного напряжения сжатия. Представленные ниже кривые сжатия листовых КПТД-материалов получены согласно ГОСТ 26605 на образцах диаметром 40 мм при скорости движения сжимающей поверхности 0,5 мм/мин.
Сжатие листовых материалов КПТД-2![]() |
Сжатие листовых материалов КПТД-2M![]() |
Эластичность стандартных листовых материалов КПТД-2 толщиной 0,18-0,35 мм характеризуется линейным характером деформаций при сжатии вплоть до предельных напряжений сжатия σ50= 23,9 - 30,6 МПа . В области номинальных рабочих напряжений сжатия σ10= 3,5 - 5,6 МПа остаточную толщину листа материала δ , мм, при сжатии возможно определить по зависимости:
где δ0 - исходная толщина листа, мм; σ - напряжение сжатия, МПа; E - модуль упругости материала при расчете абсолютной деформации листа, МПа/мм.
Для материалов КПТД-2 толщиной 0,18-0,35 мм, сжимаемых в пределах номинальных рабочих напряжений сжатия, модуль упругости не значительно зависит от исходной толщины листа и составляет для различных толщин листа:
Листовые материалы с повышенной эластичностью КПТД-2М толщиной 0,20-0,50 мм имеют выраженный нелинейный характер деформаций при сжатии до предельных напряжений сжатия σ50= 2,9 - 8,0 МПа. При этом в пределах номинальных рабочих напряжений сжатия σ10= 0,6 - 2,1 МПа характер деформации листа заданной исходной толщины δ0 возможно принять линейным и вычислить остаточную толщину листа δ по формуле 5. Ниже приведены значения модуля упругости для различных толщин материалов КПТД-2М в области линейных деформаций сжатия:
Сравнительный анализ эластичности листовых материалов КПТД-2 и КПТД-2М по значениям модуля упругости показывает, что при равных толщинах листа материалы КПТД-2М имеют модуль упругости в 1,5-2,7 раза меньший и, соответственно, имеют в 1,5-2,7 раза большую эластичность при сжатии. Аналогичное сравнение материалов по величине удельного контактного термического сопротивления (конформности к контактной поверхности) RS показывает, что значения RS и E хорошо коррелируют между собой: чем меньше значение модуля упругости (или чем выше эластичность), тем ниже удельное контактное термическое сопротивление (или тем выше конформность материала к контактной поверхности).
Другой важной специфической особенностью эластичных КПТД-материалов является их явно выраженная термическая релаксация, т.е. снижение величины термического сопротивления в соединении «теплоотдающая поверхность - теплопроводящий материал - теплопринимающая поверхность» с течением времени. Величина релаксационного снижения термического сопротивления ΔRτ зависит от вида материала, времени «приработки» материала (обычно 20-150 часов) и рабочего напряжения сжатия (0,07-1,7 МПа). Эффект термической релаксации возможно объяснить перестройкой внутренней гетерогенной структуры деформированного материала из неравновесного состояния к более равновесному с увеличением так называемой внутренней трехмерной кластерной теплопроводности. В течение времени приработки снижается также суммарное удельное контактное сопротивление RS, т.е. увеличивается конформность материала к контактной поверхности.
Термическая релаксация наиболее выражена для листовых материалов КПТД-2 и КПТД-2М. На графиках представлены зависимости термического сопротивления материалов от напряжения сжатия при различном времени приработки материала. В данном случае величина релаксационного снижения термического сопротивления ΔRτ составляет 5,5-17,0 % от величины суммарного термического сопротивления R, определенного в течение первого цикла сжатия и нагрева (1–го термоцикла) при испытании материала.
Термическая релаксация материалов КПТД-2![]() |
Термическая релаксация материалов КПТД-2M![]() |
На 2017 год у Samsung очень большие планы. Компании надо реабилитироваться после ситуации с дефектным Note 7.
Lorem ipsum dolor sit amet, consectetur adipisicing elit. Velit cupiditate id labore voluptates quia atque eos possimus impedit in tempora optio excepturi ipsa dolorum recusandae pariatur perspiciatis vero reiciendis cum!Ipsum consectetur ipsa quaerat laborum illo debitis quae molestias eligendi voluptates assumenda voluptate perspiciatis praesentium doloremque consequatur saepe ut aperiam nulla esse optio asperiores cumque doloribus quas autem voluptatum sint!
1 299 руб.
1 400 руб.